Nếu đã từng xem qua bộ phim Captain America 2: The winter soldier, chắc hẳn bạn vẫn còn nhớ cảnh phim tổ chức Hydra sử dụng thuật toán để biết được những người có thể gây nguy hiểm cho chúng là ai. Chúng thậm chí có thể dự đoán được tương lai, số phận của một con người.
Nhưng thuật toán đó dựa vào đâu mà có thể làm được như vậy? Đó chính là Big Data.
Big Data là gì?
Đúng như tên gọi của nó, Big Data là thuật ngữ dùng để chỉ một tập hợp dữ liệu rất lớn và phức tạp đến mức các công cụ phân tích, xử lý dữ liệu thông thường không thể nào đảm đương được nhiệm vụ của nó.
Hãy tưởng tượng, 50 người ngẫu nhiên truy cập vào một trang web bất kỳ. Các hoạt động của họ trên website đó sẽ được lưu trữ dưới dạng các dữ liệu (data). Tuy nhiên, nếu có hơn 3 triệu người cùng truy cập vào trang web ấy, thì đó được gọi là Big Data (hay Dữ Liệu Lớn).
Theo trang internetlivestats.com, ngay tại thời điểm bạn đang đọc bài viết này thì có hơn 3.800.950.100 người dùng đang sử dụng Internet trên toàn thế giới. Con số ấy là gì vậy? Nó chính là Big Data.
Và với một khối dữ liệu không lồ mang trong mình hàng tấn không tin quý giá như vậy, nếu trích xuất thành công sẽ giúp rất nhiều cho việc kinh doanh, khoa học, y tế, giao thông, và thậm chí là cả... dự đoán tương lai.
Cấu tạo 4V của Big Data
Mọi thứ trên thế giới đều có cấu tạo của riêng nó, cho dù là những sinh vật bé nhỏ nhất hay những thứ khổng lồ. Big Data cũng vậy, có thể phân tích nó thành 4 yếu tố (còn gọi là mô hình 4V): Khối lượng (Volume), Tốc độ (Velocity), Đa dạng (Variety), và Tính chân thực (Veracity).
Khối lượng: Tất cả những hoạt động diễn ra từ các nguồn đa dạng như giao dịch thương mại, mạng xã hội, thông tin qua lại giữa máy móc hay cảm biến dữ liệu đều được thuật toán Big Data quan sát và theo dõi. Chính vì thế, khối lượng của Big Data phải nói là khổng lồ.
Tốc độ: Chỉ các luồng dữ liệu (data) ở tốc độ cao và phải được xử lý kịp thời. Việc xử lý dữ liệu như phân tích dòng data để đưa ra kết quả gần hoặc song song với thời gian thực cũng đều diễn ra rất nhanh.
Lấy ví dụ như Facebook! Mạng xã hội này phải xử lý khoảng... 900 triệu bức hình upload lên mỗi ngày. Tốc độ xử lý hình ảnh này chính là tốc độ xử lý Big Data của Facebook.
Đa dạng: Nguồn dữ liệu của Big Data đến từ rất nhiều nguồn. Đó là tất cả các dạng thông tin có thể được cấu trúc hóa, số hóa trong cơ sở dữ liệu truyền thống.
Chúng có thể là các tài liệu văn bản phi cấu trúc, video, âm thanh, email, thậm chí là dữ liệu mã cổ phiếu.
Tính chân thực: Mặc dù, chất lượng cũng như khả năng sử dụng của dữ liệu phần lớn phụ thuộc vào nguồn cung cấp, nhưng chúng ta chẳng bao giờ có thể tránh được rủi ro không mong muốn.
Trên thực tế không phải những dữ liệu nào cũng có giá trị cao mà trong đó đều có tốt có xấu. Tính chân thực ở đây, tức là dữ liệu phải đáng tin cậy.
Big Data và xu hướng bắt buộc của doanh nghiệp trong tương lai
Nhìn chung, tất cả các kiểu dữ liệu đều quan trọng đối với kinh doanh, bất kể là Small Data hay Big Data.
Trong khi Small Data chỉ hiệu quả cho kinh doanh nhỏ lẻ để nhằm có bước đệm phát triển sau này, thì Big Data có giá trị giúp ích rất lớn cho việc nghiên cứu, phân tích những nhu cầu và cơ hội phát triển của khách hàng.
Lợi ích cụ thể của Big Data là:
1. Giúp phát triển tính sáng tạo
Để đạt được thành công trong kinh doanh, ý tưởng sáng tạo là một thứ cực kỳ quan trọng.
Nó cũng lý giải cho việc tại sao Big Data lại cần thiết trong công việc tìm ra loại giải pháp nào mà người dùng đang tìm kiếm đến như vậy.
Ví dụ, các hãng hàng không tất nhiên sẽ không thể vì một người muốn du lịch tới Tokyo mà cho cất cánh một chiếc máy bay 150 chỗ được. Họ sẽ phải sử dụng đến kho dữ liệu khổng lồ của họ, dựa trên những yêu cầu từ khách hàng và thông tin sẵn có để đưa ra giải pháp phù hợp hơn - ở đây là tìm cho họ một chuyến bay hợp lý.
2. Biến giấc mơ kinh doanh trở thành sự thật
Phân tích Big Data sẽ là công cụ tốt nhất để tìm ra ý tưởng kinh doanh và tạo ra giải pháp sao cho phù hợp nhất với chiến lược của công ty.
Xu hướng thị trường sẽ được dự đoán nhờ Big Data
Tại sao ư? Một công ty muốn phát triển tốt cần có tầm nhìn trong dài hạn, ít nhất phải là 5 - 10 năm. Dự đoán trước được xu hướng thị trường có thể đem lại một nguồn lợi nhuận khổng lồ.
Nhưng bạn không thể nào dự đoán được 5 năm tiếp theo chỉ bằng một lượng nhỏ dữ liệu để phân tích được. Đó chính là lý do Big Data trở nên quan trọng.
3. Tiết kiệm chi phí
Dữ liệu lớn, phương pháp kinh doanh sẽ hiệu quả hơn và đương nhiên chi phí phải bỏ ra cũng thấp hơn.
4. Giảm thiểu thời gian
Công cụ tốc độ cao như Hadoop và phân tích bộ nhớ có thể xác định dễ dàng các nguồn dữ liệu mới giúp các doanh nghiệp phân tích dữ liệu ngay tức thì và đưa ra các quyết định nhanh chóng dựa trên khả năng tự học - machine learning.
Nguồn tham khảo: Forbes, Big Data, Dummies, SAS, Plasma Comp...