Còn những nguyên tố bí ẩn?
Ngày nay, ai cũng biết rằng, vật chất xung quanh chúng ta, từ nhà cửa, xe cộ cho đến da thịt đều không phải những khối vật liệu liên tục. Giống như mỗi ngôi nhà được xây nên từ nhiều viên gạch, mỗi mẩu vật chất hàng ngày chúng ta biết tới đều cấu tạo từ vô số phần tử nhỏ hơn.
Các phần tử cấu tạo nên những loại vật liệu hàng ngày chúng ta vẫn biết tới đó được gọi là các phân tử. Số lượng các loại phân tử thì rất nhiều vì chúng vốn được tạo nên từ một hoặc nhiều phần tử khác gọi là các nguyên tử.
Mỗi loại nguyên tử là đại diện cho một nguyên tố. Và như chúng ta đã biết rằng, bảng tuần hoàn hóa học ngày nay chỉ có hơn 100 ô (mỗi ô là vị trí của một nguyên tố). Tức là số loại nguyên tử, hay nói cách khác là số nguyên tố chúng ta đã biết rất hữu hạn.
Tuy nhiên, vì một phân tử thì có thể tạo thành từ một hay nhiều nguyên tử và có thể từ nhiều loại nguyên tử khác nhau, nên số các vật liệu chúng ta có thể đếm hàng ngày mới nhiều ghê gớm như thế. Câu hỏi đặt ra là liệu rằng hơn 100 nguyên tố đã được xác định kia đã phải tất cả chưa. Hoặc ít ra là gần như tất cả chưa hay còn vô số nguyên tố khác mà con người chưa biết tới?
Một tỉ lệ rất lớn trong chúng ta tin rằng, còn rất nhiều các nguyên tố khác mà con người chưa tìm thấy. Nhưng thực ra, khoa học ngày nay cho chúng ta biết rằng không phải như vậy. Số lượng các nguyên tố hóa học là hữu hạn và nếu chúng ta chưa tìm ra hết thì cũng sắp hết rồi. Vì sao vậy?
Các nguyên tử vốn không phải là không thể phân chia như người ta từng tưởng tượng. Nó được cấu tạo từ một hạt nhân nặng nằm ở trung tâm và các electron nhẹ hơn rất nhiều chuyển động quanh hạt nhân trên những quỹ đạo khác nhau.
Bản thân hạt nhân lại không phải một khối thống nhất mà chúng được tạo thành các hạt nhỏ hơn là các proton và neutron. Mỗi proton và neutron lại được tạo thành từ ba hạt nhỏ hơn nữa gọi là các quark.
Tuy nhiên các quark tạo thành chúng cũng thuộc hai loại khác nhau gọi là loại up và loại down. Cụ thể là mỗi neutron được tạo thành từ hai quark down và một quark up, còn proton thì ngược lại.
Mỗi hạt nhân nguyên tử có số proton xác định. Do đó số proton trong nguyên tử đặc trưng cho nguyên tố hóa học. Trong bảng tuần hoàn chúng ta đã biết thì mỗi nguyên tố được đứng ở một vị trí xác định với số hiệu đúng với số thứ tự của nó trong bảng. Số hiệu hay số thứ tự đó thực ra chính là số proton trong nguyên tử đặc trưng cho nguyên tố hóa học.
Tương tác hạt là mấu chốt
Vật lý ngày nay đã chứng minh rằng, trong vũ trụ chỉ có bốn loại tương tác (lực) cơ bản. Đó là tương tác hấp dẫn, tương tác điện từ, tương tác hạt nhân mạnh (hay gọi là tương tác mạnh) và tương tác hạt nhân yếu (tương tác yếu).
Tất cả các tương tác khác mà hàng ngày chúng ta nghe nói tới, thực ra đều chỉ là những biểu hiện khác nhau của một trong các loại tương tác cơ bản trên. Trong bốn loại tương tác cơ bản đó thì tương tác hấp dẫn là yếu nhất. Nếu so sánh nó với giá trị của các tương tác còn lại thì nó nhỏ đến mức có thể bỏ qua.
Mỗi hạt proton đều mang một đơn vị điện tích dương. Điều đó có nghĩa là chúng đẩy lẫn nhau, giống như đưa cùng dấu của hai thanh nam châm lại gần nhau. Đó là tác dụng của tương tác điện tử.
Tuy nhiên, bên trong hạt nhân nguyên tử, nhờ có tương tác mạnh giữa các hạt quark mà giữa các hạt proton và netron cũng có lực liên kết. Liên kết này là loại liên kết mạnh nhất, nên mặc dù có lực đẩy giữa các proton nhưng với sự có mặt của các neutron nữa thì các hạt nhân nguyên tử vẫn không bị phá vỡ.
Tuy nhiên tương tác mạnh cũng có tầm tác dụng ngắn nhất. Vậy nên nếu hạt nhân có nhiều proton hơn thì kích thước của nó cũng lớn hơn. Và tương tác này sẽ mất tác dụng trong khi lực đẩy điện lúc này lại lớn hơn vì số proton lớn. Vậy nên để các hạt nhân nặng tồn tại được thì chúng lại cần được bổ sung thêm tương tác mạnh. Sự bổ sung đó đến từ các neutron thêm vào.
Vì vậy nên nếu để ý tới các nguyên tố trên bảng tuần hoàn hóa học, chúng ta sẽ thấy các nguyên tố càng cao (có số proton càng nhiều) thì tỉ lệ giữa số neutron và số proton lại càng lớn. Chính nhờ có các neutron bổ sung thì các nguyên tố nặng như các nguyên tố kim loại chẳng hạn mới có thể tồn tại được mà hạt nhân không bị vỡ ra thành các phần nhỏ hơn.
Bản thân neutron vốn không bền. Chúng chỉ bền khi liên kết trực tiếp với proton trong hạt nhân nguyên tử. Khi đứng độc lập chúng sẽ bị phân rã Beta, trở thành một proton, một electron và một phản neutrino. Cái đó là tác dụng của loại tương tác cơ bản thứ tư - tương tác yếu.
Khi hạt nhân nguyên tử có quá nhiều neutron so với proton thì sẽ có nhiều khả năng có các neutron bị cách ly hoàn toàn khỏi proton và phân rã Beta khi đó có cơ hội xảy ra.
Sự phân rã này làm cho hạt nhân trở nên không bền, nó sinh ra những hiện tượng phóng xạ hoặc phân hạch. Hạt nhân càng nặng thì càng không bền chính vì lý do như vậy. Các hạt nhân có số proton gần 100 trở lên đều không tránh khỏi hiện tượng đó. Chúng được gọi là các nguyên tố phóng xạ.
Đến nay trong bảng tuần hoàn hóa học chúng ta có thể thấy nguyên tố có số hiệu cao nhất là 118. Tuy vậy, thực tế có những nguyên tố phóng xạ không bền tới mức khó tìm thấy trong tự nhiên. Nó chỉ có thể được tạo ra trong phòng thí nghiệm. Sau khi được tạo thành chúng sẽ phân rã rất nhanh.
Vậy nên cho dù sâu dưới lòng đất hay ở những nơi khắc nghiệt nhất của vũ trụ đi nữa, việc tồn tại các nguyên tố có tới vài ba trăm proton là không thể vì vẫn luôn có sự tham gia của các tương tác cơ bản nêu trên. Như vậy có thể kết luận rằng, bảng tuần hoàn hóa học không thể dài mãi.